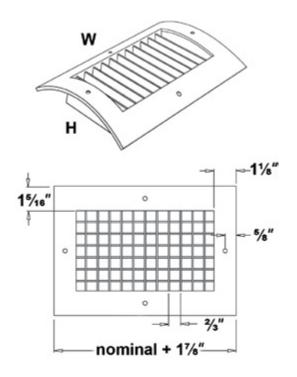
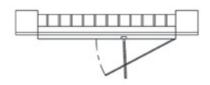


Description


The CREG is a supply/return register with a contoured face that mounts directly on spiral ductwork. It has adjustable double deflection blades that allow for 4-way airflow and half length screwdriver operated volume adjusting scoop.


Duct diameter must be 4" larger than height (H) of diffuser. Registers are manufactured to fit duct diameters 8" - 48".

Materials and finish

Galvanized sheet steel (standard). Custom finishes are available. Call for details.

Register	Min. duct	Free	Duct opening	Weight	
nom. size	diameter	area			
W x H (in)	(in)	(ft²)	W X H (in)	(lbs)	
12 × 4	8	0.231	12 x 4	1.8	
14 × 4	8	0.271	14 x 4	2.1	
12 x 6	10	0.362	12 x 6	2.5	
14 x 6	10	0.425	14 x 6	2.9	
16 x 6	10	0.488	16 x 6	3.3	

Curved register

Core velocity (fpm)			300	400	500	600	700	800	1000	1200
Velocity Pressure			0.004	0.008	0.013	0.018	0.025	0.033	0.051	0.074
Size										
A _c 0.231 (ft²) 12 x 4	cfm		69	92	116	139	162	185	231	277
	NC	0°	< 20	< 20	< 20	20	25	30	35	40
	Throw ft	0°	5 6 6.5	6 7 9	8 9 11	9 10 14	11 12 16	12 14 18	14 16 24	16 18 28
A _c 0.271 (ft²) 14 x 4	cfm		81	108	136	163	190	217	271	325
	NC	0°	< 20	< 20	< 20	20	25	30	35	40
	Throw ft	0°	5 7 8	7 8 10	10 11 13	11 12 16	13 15 20	14 16 22	16 19 29	19 22 34
A _c 0.362 (ft²) 12 x 6	cfm		109	145	181	217	254	290	362	435
	NC	0°	< 20	< 20	< 20	20	25	30	35	40
	Throw ft	0°	6 7 8	8 9 11	10 12 14	12 13 18	14 16 21	16 18 24	18 21 32	22 26 38
A _c 0.425 (ft²) 14 x 6	cfm		128	170	213	255	298	340	425	510
	NC	0°	< 20	< 20	< 20	20	25	30	35	40
	Throw ft	0°	6 8 9	9 10 12	11 12 15	12 14 19	14 16 22	17 19 25	19 22 33	22 26 39
A _c 0.488 (ft²) 16 x 6	cfm		146	195	244	293	342	391	488	586
	NC	0°	< 20	< 20	< 20	20	25	30	35	40
	Throw ft	0°	7 8 10	9 10 12	11 13 16	13 15 20	15 17 23	17 20 26	19 22 34	23 27 40

Performance notes:

- 1.) Performance data calculated with blades set at 0°.
- 2.) Engineering based off nominal face dimension.
- 3.) Throw values are measured in feet for terminal velocities of 150/100/50 FPM.
- 4.) Throw data is based on supply air and room air both at isothermal conditions.
- 5.) Effective core areas listed in chart are defined as the measurement of space between the blades actually utilized by the air.
- 6.) Data obtained from tests conducted in accordance with ANSI/ASHRAE standard 70-2006.

